We discuss an innovative method for the description of inhomogeneous phases designed to improve the standard Ginzburg-Landau expansion. The method is characterized by two key ingredients. The first one is a moving average of the order parameter designed to account for the long-wavelength modulations of the condensate. The second one is a sum of the high frequency modes, to improve the description of the phase transition to the restored phase. The method is applied to compare the free energies of 1D and 2D inhomogeneous structures arising in the chirally symmetric broken phase.