Photonic condensates are complex systems exhibiting phase transitions due to the interaction with their molecular environment. Given the macroscopic number of molecules that form a reservoir of excitations, numerical simulations are expensive, even for systems with few cavity modes. We present a systematic construction of molecular excitation profiles with a clear hierarchical ordering, such that only modes in the lowest order in the hierarchy directly affect the cavity photon dynamics. In addition to a substantial gain in computational efficiency for simulations of photon dynamics, the explicit spatial shape of the mode profiles offers a clear physical insight into the competition among the cavity modes for access to molecular excitations.