The Next-Generation Very Large Array (ngVLA) has the potential to be a workhorse for the discovery and study of paired supermassive black holes either at large separations (dual) or in tightly bound systems (binary). In this chapter, we outline the science case for the study of these supermassive pairs, and summarize discovery methods that can be used at radio wavelengths to discover them: including morphological, spectral, and time-domain identifications. One critical aspect of this work is that multi-messenger binary black hole studies may be possible with the ngVLA when combined with gravitational-wave searches using pulsar timing array techniques. However, long-baseline interferometery (>>1000 km) will make this possibility more likely by expanding the redshift range at which radio emission arising from two separate black holes may be resolved and studied.