The origin of Mercurys high iron-to-rock ratio is still unknown. In this work we investigate Mercurys formation via giant impacts and consider the possibilities of a single giant impact, a hit-and-run, and multiple collisions in one theoretical framework. We study the standard collision parameters (impact velocity, mass ratio, impact parameter), along with the impactors composition and the cooling of the target. It is found that the impactors composition affects the iron distribution within the planet and the final mass of the target by up to 15%, although the resulting mean iron fraction is similar. We suggest that an efficient giant impact requires to be head-on with high velocities, while in the hit-and-run case the impact can occur closer to the most probable collision angle (45$^{circ}$). It is also shown that Mercurys current iron-to-rock ratio can be a result of multiple-collisions, with their exact number depending on the collision parameters. Mass loss is found to be more significant when the collisions are tight in time.