Observation of acoustic Landau quantization and quantum-Hall-like edge states


الملخص بالإنكليزية

Many intriguing phenomena occur for electrons under strong magnetic fields. Recently, it was proposed that an appropriate strain texture in graphene can induce a synthetic gauge field, in which the electrons behave like in a real magnetic field. This opened the door to control quantum transport by mechanical means and to explore unprecedented physics in high-field regime. Such studies have been achieved in molecular and photonic lattices. Here we report the first experimental realization of giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to acoustic graphene. Benefited from the controllability of our macroscopic platform, we observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive before owing to the challenge in creating large-area uniform pseudomagnetic fields. These results, highly consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings, conceptually novel in acoustics, may offer new opportunities to manipulate sound.

تحميل البحث