The Kazhdan-Lusztig polynomials of uniform matroids


الملخص بالإنكليزية

The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias, Proudfoot, and Wakefield [{it Adv. Math. 2016}]. Let $U_{m,d}$ denote the uniform matroid of rank $d$ on a set of $m+d$ elements. Gedeon, Proudfoot, and Young [{it J. Combin. Theory Ser. A, 2017}] pointed out that they can derive an explicit formula of the Kazhdan-Lusztig polynomials of $U_{m,d}$ using equivariant Kazhdan-Lusztig polynomials. In this paper we give two alternative explicit formulas, which allow us to prove the real-rootedness of the Kazhdan-Lusztig polynomials of $U_{m,d}$ for $2leq mleq 15$ and all $d$s. The case $m=1$ was previously proved by Gedeon, Proudfoot, and Young [{it S{e}m. Lothar. Combin. 2017}]. We further determine the $Z$-polynomials of all $U_{m,d}$s and prove the real-rootedness of the $Z$-polynomials of $U_{m,d}$ for $2leq mleq 15$ and all $d$s. Our formula also enables us to give an alternative proof of Gedeon, Proudfoot, and Youngs formula for the Kazhdan-Lusztig polynomials of $U_{m,d}$s without using the equivariant Kazhdan-Lusztig polynomials.

تحميل البحث