A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics


الملخص بالإنكليزية

We present a simple and well defined prescription to compare absorption lines in supernova (SN) spectra with lists of transitions drawn from the National Institute of Standards and Technology (NIST) database. The method is designed to be applicable to simple spectra where the photosphere can be mostly described by absorptions from single transitions with a single photospheric velocity. These conditions are plausible for SN spectra obtained shortly after explosion. Here we show that the method also works well for spectra of hydrogen-poor (Type I) superluminous supernovae (SLSNe-I) around peak. Analysis of high signal to noise spectra leads to clear identification of numerous spectroscopic features arising from ions of carbon and oxygen, that account for the majority of absorption features detected in the optical range, suggesting the outer envelope of SLSN-I progenitors is dominated by these elements. We find that the prominent absorption features seen in the blue are dominated by numerous lines of OII, as previously suggested, and that the apparent absorption feature widths are dominated by line density and not by doppler broadening. In fact, we find that while the expansion velocities of SLSNe-I around peak are similar to those of normal SNe, the apparent velocity distribution (manifest as the width of single transition features) is much lower (~1500 km/s) indicating emission from a very narrow photosphere in velocity space that is nevertheless expanding rapidly. We inspect the controversial case of ASASSN-15lh, and find that the early spectrum of this object is not consistent with those of SLSNe-I. We also show that SLSNe that initially lack hydrogen features but develop these at late phases, such as iPTF15esb and iPTF16bad, also differ in their early spectra from standard SLSNe-I.

تحميل البحث