Approaching central projections in AF-algebras


الملخص بالإنكليزية

Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfrak ppreceq q/mathfrak ppreceq (1- q)/mathfrak p$ or $p/mathfrak psucceq q/mathfrak p succeq (1-q)/mathfrak p.$ We prove that $p$ is central iff $[p]$ is $sqsubseteq$-minimal iff $[p]$ is a characteristic element in $K_0(A)$. If, in addition, $A$ is liminary, then each extremal state of $K_0(A)$ is discrete, $K_0(A)$ has general comparability, and $A$ comes equipped with a centripetal transformation $[p]mapsto [p]^Game$ that moves $p$ towards the center. The number $n(p) $ of $Game$-steps needed by $[p]$ to reach the center has the monotonicity property $[p]sqsubseteq [q]Rightarrow n(p)leq n(q).$ Our proofs combine the $K_0$-theoretic version of Elliotts classification, the categorical equivalence $Gamma$ between MV-algebras and unital $ell$-groups, and L os ultraproduct theorem for first-order logic.

تحميل البحث