Electric-Field Induced Superconductor-Insulator Transitions in Exfoliated Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ Flakes


الملخص بالإنكليزية

We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the solid ion conductor engenders a reversible SIT in BSCCO, as lithium ions from the substrate are electrically driven into and out of BSCCO. Scaling analysis indicates that the SIT follows the theoretical description of a two-dimensional quantum phase transition (2D-QPT). We further carry out tunneling spectroscopy in graphite(G)/BSCCO heterojunctions. We observe V-shaped gaps in the critical regime of the SIT. The density of states in BSCCO gets symmetrically suppressed by further going into the insulating regime. Our technique of combining solid state gating with tunneling spectroscopy can be easily applied to the study of other two-dimensional materials.

تحميل البحث