The newly discovered topological Dirac semimetals host the possibilities of various topological phase transitions through the control of spin-orbit coupling as well as symmetries and dimensionalities. Here, we report a magnetotransport study of high-mobility (Cd1-xZnx)3As2 films, where the topological Dirac semimetal phase can be turned into a trivial insulator via chemical substitution. By high-field measurements with a Hall-bar geometry, magnetoresistance components ascribed to the chiral charge pumping have been distinguished from other extrinsic effects. The negative magnetoresistance exhibits a clear suppression upon Zn doping, reflecting decreasing Berry curvature of the band structure as the topological phase transition is induced by reducing the spin-orbit coupling.