The pair-flip model: a very entangled translationally invariant spin chain


الملخص بالإنكليزية

Investigating translationally invariant qudit spin chains with a low local dimension, we ask what is the best possible tradeoff between the scaling of the entanglement entropy of a large block and the inverse-polynomial scaling of the spectral gap. Restricting ourselves to Hamiltonians with a rewriting interaction, we find the pair-flip model, a family of spin chains with nearest neighbor, translationally invariant, frustration-free interactions, with a very entangled ground state and an inverse-polynomial spectral gap. For a ground state in a particular invariant subspace, the entanglement entropy across a middle cut scales as $log n$ for qubits (it is equivalent to the XXX model), while for qutrits and higher, it scales as $sqrt{n}$. Moreover, we conjecture that this particular ground state can be made unique by adding a small translationally-invariant perturbation that favors neighboring letter pairs, adding a small amount of frustration, while retaining the entropy scaling.

تحميل البحث