Entity Set Search of Scientific Literature: An Unsupervised Ranking Approach


الملخص بالإنكليزية

Literature search is critical for any scientific research. Different from Web or general domain search, a large portion of queries in scientific literature search are entity-set queries, that is, multiple entities of possibly different types. Entity-set queries reflect users need for finding documents that contain multiple entities and reveal inter-entity relationships and thus pose non-trivial challenges to existing search algorithms that model each entity separately. However, entity-set queries are usually sparse (i.e., not so repetitive), which makes ineffective many supervised ranking models that rely heavily on associated click history. To address these challenges, we introduce SetRank, an unsupervised ranking framework that models inter-entity relationships and captures entity type information. Furthermore, we develop a novel unsupervised model selection algorithm, based on the technique of weighted rank aggregation, to automatically choose the parameter settings in SetRank without resorting to a labeled validation set. We evaluate our proposed unsupervised approach using datasets from TREC Genomics Tracks and Semantic Scholars query log. The experiments demonstrate that SetRank significantly outperforms the baseline unsupervised models, especially on entity-set queries, and our model selection algorithm effectively chooses suitable parameter settings.

تحميل البحث