Broadband loop gap resonator for nitrogen vacancy centers in diamond


الملخص بالإنكليزية

We present an S-band tunable loop gap resonator (LGR) providing strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area $gtrsim!50$ mm$^2$ or cylindrical volume $gtrsim!250$ mm$^3$. The wide 80 MHz device bandwidth allows driving all eight NV Zeeman resonances for bias magnetic fields below 20 G. For pulsed applications the device realizes percent-scale microwave drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity $sigma_text{rms}!=! 1.6%$ and a peak-to-peak variation $sigma_text{pp}!=! 3%$ over a circular area of 11 mm$^2$, and $sigma_text{rms} !=! 3.2%$ and $sigma_text{pp}! =! 10.5%$ over a larger 32 mm$^2$ circular area. We demonstrate incident MW power coupling to the LGR using multiple methodologies: a PCB-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately $2pi$ steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.

تحميل البحث