Ouyang et al. proposed an $(n,n)$ threshold quantum secret sharing scheme, where the number of participants is limited to $n=4k+1,kin Z^+$, and the security evaluation of the scheme was carried out accordingly. In this paper, we propose an $(n,n)$ threshold quantum secret sharing scheme for the number of participants $n$ in any case ( $nin Z^+$ ). The scheme is based on a quantum circuit, which consists of Clifford group gates and Toffoli gate. We study the properties of the quantum circuit in this paper and use the quantum circuit to analyze the security of the scheme for dishonest participants.