The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.