A quantum algorithm for simulating non-sparse Hamiltonians


الملخص بالإنكليزية

We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the input model where the entries of the Hamiltonian are stored in a data structure in a quantum random access memory (qRAM) which allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve poly-logarithmic dependence on precision. The time complexity of our algorithm, measured in terms of the circuit depth, is $O(tsqrt{N}|H|,mathrm{polylog}(N, t|H|, 1/epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $epsilon$ is the error in the final state, which we call precision. Our algorithm can be directly applied as a subroutine for unitary implementation and quantum linear systems solvers, achieving $widetilde{O}(sqrt{N})$ dependence for both applications.

تحميل البحث