X-ray Flashes (XRFs), binary-driven hypernovae (BdHNe) are long GRB subclasses with progenitor a CO$_{rm core}$, undergoing a supernova (SN) explosion and hypercritically accreting in a tight binary system onto a companion neutron star (NS) or black hole (BH). In XRFs the NS does not reach by accretion the critical mass and no BH is formed. In BdHNe I, with shorter binary periods, the NS gravitationally collapses and leads to a new born BH. In BdHNe II the accretion on an already formed BH leads to a more massive BH. We assume that the GeV emission observed by textit{Fermi}-LAT originates from the rotational energy of the BH. Consequently, we verify that, as expected, in XRFs no GeV emission is observed. In $16$ BdHNe I and $5$ BdHNe II, within the boresight angle of LAT, the integrated GeV emission allows to estimate the initial mass and spin of the BH. In the remaining $27$ sources in the plane of the binary system no GeV emission occurs, hampered by the presence of the HN ejecta. From the ratio, $21/48$, we infer a new asymmetric morphology for the BdHNe reminiscent of the one observed in active galactic nuclei (AGN): the GeV emission occurs within a cone of half-opening angle $approx 60^{circ}$ from the normal to the orbital plane of the binary progenitor. The transparency condition requires a Lorentz factor $Gamma sim 1500$ on the source of GeV emission. The GeV luminosity in the rest-frame of the source follows a universal power-law with index of $-1.20 pm 0.04$, allowing to estimate the spin-down rate of the BH