We analyze the combined Spitzer and ground-based data for OGLE-2017-BLG-1140 and show that the event was generated by a Jupiter-class $(m_psimeq 1.6,M_{rm jup})$ planet orbiting a mid-late M dwarf $(Msimeq 0.2,M_odot)$ that lies $D_{LS}simeq 1.0,mathrm{kpc}$ in the foreground of the microlensed, Galactic-bar, source star. The planet-host projected separation is $a_perp simeq 1.0,mathrm{au}$, i.e., well-beyond the snow line. By measuring the source proper motion ${mathbf{mu}}_s$ from ongoing, long-term OGLE imaging, and combining this with the lens-source relative proper motion ${mathbf{mu}}_mathrm{rel}$ derived from the microlensing solution, we show that the lens proper motion ${mathbf{mu}}_l={mathbf{mu}}_mathrm{rel} + {mathbf{mu}}_s$ is consistent with the lens lying in the Galactic disk, although a bulge lens is not ruled out. We show that while the Spitzer and ground-based data are comparably well fitted by planetary (i.e., binary-lens, 2L1S) models and by binary-source (1L2S) models, the combination of Spitzer and ground-based data decisively favor the planetary model. This is a new channel to resolve the 2L1S/1L2S degeneracy, which can be difficult to break in some cases.