Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays


الملخص بالإنكليزية

In this paper, we proposed a theoretical model in the far-infrared and terahertz (THz) bands, which is a dumbbell-shaped graphene metamaterial arrays with a combination of graphene nanorod and two semisphere-suspended heads. We report a detailed theoretical investigation on how to enhance localized electric field and the absorption in the dumbbell-shaped graphene metamaterial arrays. The simulation results show that by changing the geometrical parameters of the structure and the Fermi level of graphene, we can change the absorption characteristics. Furthermore, we have discovered that the resonant wavelength is insensitive to TM polarization. In addition, we also find that the double-layer graphene arrays have better absorption characteristics than single-layer graphene arrays. This work allows us to achieve tunable terahertz absorber, and may also provide potential applications in optical filter and biochemical sensing.

تحميل البحث