We compute the zero temperature dynamical structure factor $S({bf q},omega)$ of the triangular lattice Heisenberg model (TLHM) using a Schwinger boson approach that includes the Gaussian fluctuations ($1/N$ corrections) of the saddle point solution. While the ground state of this model exhibits a well-known 120$^{circ}$ magnetic ordering, experimental observations have revealed a strong quantum character of the excitation spectrum. We conjecture that this phenomenon arises from the proximity of the ground state of the TLHM to the quantum melting point separating the magnetically ordered and spin liquid states. Within this scenario, magnons are described as collective modes (two spinon-bound states) of a spinon condensate (Higgs phase) that spontaneously breaks the SU(2) symmetry of the TLHM. Crucial to our results is the proper account of this spontaneous symmetry breaking. The main qualitative difference relative to semi-classical treatments ($1/S$ expansion) is the presence of a high-energy spinon continuum extending up to about three times the single-magnon bandwidth. In addition, the magnitude of the ordered moment ($m=0.224$) agrees very well with numerical results and the low energy part of the single-magnon dispersion is in very good agreement with series expansions. Our results indicate that the Schwinger boson approach is an adequate starting point for describing the excitation spectrum of some magnetically ordered compounds that are near the quantum melting point separating this Higgs phase from the {it deconfined} spin liquid state.