We study (transverse) scalar curvature type equation on compact Sasaki manifolds, in view of recent breakthrough of Chen-Cheng cite{CC1, CC2, CC3} on existence of Kahler metrics with constant scalar curvature (csck) on compact Kahler manifolds. Following their strategy, we prove that given a Sasaki structure (with Reeb vector field and complex structure on its cone fixed ), there exists a Sasaki structure with transverse constant scalar curvature (cscs) if and only if the $mathcal{K}$-energy is reduced proper modulo the identity component of the automorphism group which preserves both the Reeb vector field and transverse complex structure. Technically, the proof mainly consists of two parts. The first part is a priori estimates for scalar curvature type equations which are parallel to Chen-Chengs results in cite{CC2, CC3} in Sasaki setting. The second part is geometric pluripotential theory on a compact Sasaki manifold, building up on profound results in geometric pluripotential theory on Kahler manifolds. There are notable, and indeed subtle differences in Sasaki setting (compared with Kahler setting) for both parts (PDE and pluripotential theory). The PDE part is an adaption of deep work of Chen-Cheng cite{CC1, CC2, CC3} to Sasaki setting with necessary modifications. While the geometric pluripotential theory on a compact Sasaki manifold has new difficulties, compared with geometric pluripotential theory in Kahler setting which is very intricate. We shall present the details of geometric pluripotential on Sasaki manifolds in a separate paper cite{HL} (joint work with Jun Li).