Topological Flat Band and Parity-Time Symmetry in a Honeycomb Lattice of Coupled Resonant Optical Waveguides


الملخص بالإنكليزية

Two-dimensional (2D) coupled resonant optical waveguide (CROW), exhibiting topological edge states, provides an efficient platform for designing integrated topological photonic devices. In this paper, we propose an experimentally feasible design of 2D honeycomb CROW photonic structure. The characteristic optical system possesses two-fold and three-fold Dirac points at different positions in the Brillouin zone. The effective gauge fields implemented by the intrinsic pseudo-spin-orbit interaction open up topologically nontrivial bandgaps through the Dirac points. Spatial lattice geometries allow destructive wave interference, leading to a dispersionless, nearly-flat energy band in the vicinity of the three-fold Dirac point in the telecommunication frequency regime. This nontrivial nearly-flat band yields topologically protected edge states. The pertinent physical effects brought about due to non-Hermitian gain/loss medium into the honeycomb CROW device are discussed. The generalized gain-loss lattice with parity-time symmetry decouples the gain and the loss at opposite zigzag edges, leading to purely gain or loss edge channels. Meanwhile, the gain and loss effects on the armchair boundary cancel each other, giving rise to dissipationless edge states in non-Hermitian optical systems. These characteristics underpin the fundamental importance as well as the potential applications in various optical devices such as polarizers, optical couplers, beam splitters and slow light delay lines.

تحميل البحث