Floating Forests: Quantitative Validation of Citizen Science Data Generated From Consensus Classifications


الملخص بالإنكليزية

Large-scale research endeavors can be hindered by logistical constraints limiting the amount of available data. For example, global ecological questions require a global dataset, and traditional sampling protocols are often too inefficient for a small research team to collect an adequate amount of data. Citizen science offers an alternative by crowdsourcing data collection. Despite growing popularity, the community has been slow to embrace it largely due to concerns about quality of data collected by citizen scientists. Using the citizen science project Floating Forests (http://floatingforests.org), we show that consensus classifications made by citizen scientists produce data that is of comparable quality to expert generated classifications. Floating Forests is a web-based project in which citizen scientists view satellite photographs of coastlines and trace the borders of kelp patches. Since launch in 2014, over 7,000 citizen scientists have classified over 750,000 images of kelp forests largely in California and Tasmania. Images are classified by 15 users. We generated consensus classifications by overlaying all citizen classifications and assessed accuracy by comparing to expert classifications. Matthews correlation coefficient (MCC) was calculated for each threshold (1-15), and the threshold with the highest MCC was considered optimal. We showed that optimal user threshold was 4.2 with an MCC of 0.400 (0.023 SE) for Landsats 5 and 7, and a MCC of 0.639 (0.246 SE) for Landsat 8. These results suggest that citizen science data derived from consensus classifications are of comparable accuracy to expert classifications. Citizen science projects should implement methods such as consensus classification in conjunction with a quantitative comparison to expert generated classifications to avoid concerns about data quality.

تحميل البحث