We present a parallel implicit-explicit time integration scheme for the advection-diffusion-reaction systems arising from the equations governing low-Mach number combustion with complex chemistry. Our strategy employs parallelization across the method to accelerate the serial Multi-Implicit Spectral Deferred Correction (MISDC) scheme used to couple the advection, diffusion, and reaction processes. In our approach, referred to as Concurrent Implicit Spectral Deferred Correction (CISDC), the diffusion solves and the reaction solves are performed concurrently by different processors. Our analysis shows that the proposed parallel scheme is stable for stiff problems and that the sweeps converge to the fixed-point solution at a faster rate than with serial MISDC. We present numerical examples to demonstrate that the new algorithm is high-order accurate in time, and achieves a parallel speedup compared to serial MISDC.