The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions on Berry curvature around Weyl nodes, which would lead to a large intrinsic AHE. Here, we report the large intrinsic AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 theoretically and experimentally, the large intrinsic AHE should originate from the Weyl fermions near the Fermi energy. Furthermore, the intrinsic anomalous Hall conductivity depends linearly on the magnetization and this can be attributed to the sharp decrease of magnetization and the change of topological characteristics.