Already a few bosons with contact interparticle interactions in small optical lattices feature a variety of quantum phases: superfluid, Mott-insulator and fermionized Tonks gases can be probed in such systems. To detect these phases -- pivotal for both experiment and theory -- as well as their many-body properties we analyze several distinct measures for the one-body and many-body Shannon information entropies. We exemplify the connection of these entropies with spatial correlations in the many-body state by contrasting them to the Glauber normalized correlation functions. To obtain the ground-state for lattices with commensurate filling (i.e. an integer number of particles per site) for the full range of repulsive interparticle interactions we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB) in order to solve the many-boson Schrodinger equation. We demonstrate that all emergent phases -- the superfluid, the Mott insulator, and the fermionized gas can be characterized equivalently by our many-body entropy measures and by Glaubers normalized correlation functions. In contrast to our many-body entropy measures, single-particle entropy cannot capture these transitions.