Classification of finite irreducible conformal modules over a class of Lie conformal algebras of Block type


الملخص بالإنكليزية

We classify finite irreducible conformal modules over a class of infinite Lie conformal algebras ${frak {B}}(p)$ of Block type, where $p$ is a nonzero complex number. In particular, we obtain that a finite irreducible conformal module over ${frak {B}}(p)$ may be a nontrivial extension of a finite conformal module over ${frak {Vir}}$ if $p=-1$, where ${frak {Vir}}$ is a Virasoro conformal subalgebra of ${frak {B}}(p)$. As a byproduct, we also obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal algebras ${frak b}(n)$ for $nge1$.

تحميل البحث