Minimal anomalous $mathrm{U}(1)$ theories and collider phenomenology


الملخص بالإنكليزية

We study the collider phenomenology of a neutral gauge boson $Z$ arising in minimal but anomalous $mathrm{U}(1)$ extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of $mathrm{U}(1)$ extensions in terms of the new $mathrm{U}(1)$ charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop $Z$ decays to $ZZ$ and $Z$-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.

تحميل البحث