Extreme matrices or how an exponential map links classical and free extreme laws


الملخص بالإنكليزية

Using the proposed by us thinning approach to describe extreme matrices, we find an explicit exponentiation formula linking classical extreme laws of Frechet, Gumbel and Weibull given by Fisher-Tippet-Gnedenko classification and free extreme laws of free Frechet, free Gumbel and free Weibull by Ben Arous and Voiculescu [1]. We also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be answered. In particular, we demonstrate explicit calculations for several more or less known random matrix ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing the equivalence of free extreme laws to the Peak-Over-Threshold method in classical probability.

تحميل البحث