Norms in motivic homotopy theory


الملخص بالإنكليزية

If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite etale, we show that it stabilizes to a functor $f_otimes: mathcal{SH}(S) to mathcal{SH}(S)$, where $mathcal{SH}(S)$ is the $mathbb P^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a normed motivic spectrum, which is an enhancement of a motivic $E_infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendiecks Galois theory, with Betti realization, and with Voevodskys slice filtration; we prove that the norm functors categorify Rosts multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $Hmathbb Z$, the homotopy K-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $Hmathbb Z$ is a common refinement of Fulton and MacPhersons mutliplicative transfers on Chow groups and of Voevodskys power operations in motivic cohomology.

تحميل البحث