The recent progress in understanding the mathematics of complex stochastic quantization, as well as its application to quantum chromodynamics in situations that have a complex phase problem (e.g. finite quark density, real time), has opened up an intriguing possibility for non-relativistic many-body physics which has so far remained largely unexplored. In this brief contribution, I review a few specific examples of advances in the characterization of the thermodynamics of non-relativistic matter in a variety of one-dimensional cases affected by the sign problem: repulsive interactions, finite polarization, finite mass imbalance, and projection to finite systems to obtain virial coefficients.