On monochromatic representation of sums of squares of primes


الملخص بالإنكليزية

When the sequences of squares of primes is coloured with $K$ colours, where $K geq 1$ is an integer, let $s(K)$ be the smallest integer such that each sufficiently large integer can be written as a sum of no more than $s(K)$ squares of primes, all of the same colour. We show that $s(K) ll K expleft(frac{(3log 2 + {rm o}(1))log K}{log log K}right)$ for $K geq 2$. This improves on $s(K) ll_{epsilon} K^{2 +epsilon}$, which is the best available upper bound for $s(K)$.

تحميل البحث