A First Transients Survey with JWST: the FLARE project


الملخص بالإنكليزية

JWST was conceived and built to answer one of the most fundamental questions that humans can address empirically: How did the Universe make its first stars?. Our First Lights At REionization (FLARE) project transforms the quest for the epoch of reionization from the static to the time domain. It targets the complementary question: What happened to those first stars?. It will be answered by observations of the most luminous events: supernovae and accretion on to black holes formed by direct collapse from the primordial gas clouds. These transients provide direct constraints on star-formation rates (SFRs) and the truly initial Initial Mass Function (IMF), and they may identify possible stellar seeds of supermassive black holes (SMBHs). Furthermore, our knowledge of the physics of these events at ultra-low metallicity will be much expanded. JWSTs unique capabilities will detect these most luminous and earliest cosmic messengers easily in fairly shallow observations. However, these events are very rare at the dawn of cosmic structure formation and so require large area coverage. Time domain astronomy can be advanced to an unprecedented depth by means of a shallow field of JWST reaching 27 mag AB in 2 and 4.4 microns over a field as large as 0.1 square degree visited multiple times each year. Such a survey may set strong constraints or detect massive Pop III SNe at redshifts beyond 10, pinpointing the redshift of the first stars, or at least their death. Based on our current knowledge of superluminous supernovae (SLSNe), such a survey will find one or more SLSNe at redshifts above 6 in five years and possibly several direct collapse black holes. Although JWST is not designed as a wide field survey telescope, we show that such a wide field survey is possible with JWST and is critical in addressing several of its key scientific goals.

تحميل البحث