Evolution of the Mean Jet Shape and Dijet Asymmetry Distribution of an Ensemble of Holographic Jets in Strongly Coupled Plasma


الملخص بالإنكليزية

Some of the most important probes of the quark-gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of jets are modified by passage through QGP. We model an ensemble of back-to-back dijets to gain a qualitative understanding of how the shapes of the individual jets and the asymmetry in the energy of the pairs of jets are modified by passage through an expanding droplet of strongly coupled plasma, as modeled in a holographic gauge theory. We do so by constructing an ensemble of strings in the gravitational description of the gauge theory. We model QCD jets in vacuum using strings whose endpoints move downward into the gravitational bulk spacetime with some fixed small angle that represents the opening angle (ratio of jet mass to jet energy) that the QCD jet would have in vacuum. Such strings must be moving through the gravitational bulk at (close to) the speed of light; they must be (close to) null. This condition does not specify the energy distribution along the string, meaning that it does not specify the shape of the jet being modeled. We study the dynamics of strings that are initially not null and show that strings with a wide range of initial conditions rapidly accelerate and become null and, as they do, develop a similar distribution of their energy density. We use this distribution of the energy density along the string, choose an ensemble of strings whose opening angles and energies are distributed as in perturbative QCD, and show that we can then fix one model parameter such that the mean jet shape in our ensemble matches that measured in p-p collisions reasonably well. We send our strings through the plasma, choosing the second model parameter to get a reasonable suppression in the number of jets, and study how the mean jet shape and the dijet asymmetry are modified, comparing both to data from LHC heavy ion collisions.

تحميل البحث