Let us say that an $n$-sided polygon is semi-regular if it is circumscriptible and its angles are all equal but possibly one, which is then larger than the rest. Regular polygons, in particular, are semi-regular. We prove that semi-regular polygons are spectrally determined in the class of convex piecewise smooth domains. Specifically, we show that if $Omega$ is a convex piecewise smooth planar domain, possibly with straight corners, whose Dirichlet or Neumann spectrum coincides with that of an $n$-sided semi-regular polygon $P_n$, then $Omega$ is congruent to $P_n$.