We set out to study the atmosphere of WASP-80b, a warm inflated gas giant with an equilibrium temperature of $sim$800~K, using ground-based transmission spectroscopy covering the spectral range from 520~to~910~nm. The observations allow us to probe the existence and abundance of K and Na in WASP-80bs atmosphere, existence of high-altitude clouds, and Rayleigh-scattering in the blue end of the spectrum. We observed two spectroscopic time series of WASP-80b transits with the OSIRIS spectrograph installed in the Gran Telescopio CANARIAS, and use the observations to estimate the planets transmission spectrum between 520~nm and 910~nm in 20~nm-wide passbands, and around the K~I and Na~I resonance doublets in 6~nm-wide passbands. We model three previously published broadband datasets consisting of 27 light curves jointly prior to the transmission spectroscopy analysis in order to obtain improved prior estimates for the planets orbital parameters, average radius ratio, and stellar density. We recover a flat transmission spectrum with no evidence of Rayleigh scattering or K~I or Na~I absorption, and obtain an improved system characterisation as a by-product of the broadband- and GTC-dataset modelling. The transmission spectra estimated separately from the two observing runs are consistent with each other, as are the transmission spectra estimated using either a parametric or nonparametric systematics models. The flat transmission spectrum favours an atmosphere model with high-altitude clouds over cloud-free models with stellar or sub-stellar metallicities.