Breaking the integrability of the Heisenberg model through periodic driving


الملخص بالإنكليزية

We study the fate of interacting quantum systems which are periodically driven by switching back and forth between two integrable Hamiltonians. This provides an unconventional and tunable way of breaking integrability, in the sense that the stroboscopic time evolution will generally be described by a Floquet Hamiltonian which progressively becomes less integrable as the driving frequency is reduced. Here, we exemplify this idea in spin chains subjected to periodic switching between two integrable anisotropic Heisenberg Hamiltonians. We distinguish the integrability-breaking effects of resonant interactions and perturbative (local) interactions, and illustrate these by contrasting different measures of energy in Floquet states and through a study of level spacing statistics. This scenario is argued to be representative for general driven interacting integrable systems.

تحميل البحث