We report the first intensity correlation measured with star light since Hanbury Brown and Twiss historical experiments. The photon bunching $g^{(2)}(tau, r=0)$, obtained in the photon counting regime, was measured for 3 bright stars, $alpha$ Boo, $alpha$ CMi, and $beta$ Gem. The light was collected at the focal plane of a 1~m optical telescope, was transported by a multi-mode optical fiber, split into two avalanche photodiodes and digitally correlated in real-time. For total exposure times of a few hours, we obtained contrast values around $2times10^{-3}$, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our setup. Comparing our results with the measurement of Hanbury Brown et al. on $alpha$ CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometers. This would enable $mu$as long-baseline interferometry in the optical, especially in the visible wavelengths with a limiting magnitude of 10.