Two-leg spin-1/2 ladder systems consisting of a ferromagnetic leg and an antiferromagnetic leg are considered where the spins on the legs interact through antiferromagnetic rung couplings $J_1$. These ladders can have two geometrical arrangements either zigzag or normal ladder and these systems are frustrated irrespective of their geometry. This frustration gives rise to incommensurate spin density wave, dimer and spin fluid phases in the ground state. The magnetization in the systems decreases linearly with $J^2_1$, and the systems show an incommensurate phase for $0.0<J_1<1.0$. The spin-spin correlation functions in the incommensurate phase follow power law decay which is very similar to Heisenberg antiferromagnetic chain in external magnetic field. In large $J_1$ limit, the normal ladder behaves like a collection of singlet dimers, whereas the zigzag ladder behaves as a one dimensional spin-1/2 antiferromagnetic chain.