A note on 2--bisections of claw--free cubic graphs


الملخص بالإنكليزية

A emph{$k$--bisection} of a bridgeless cubic graph $G$ is a $2$--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most $k$. Ban and Linial conjectured that {em every bridgeless cubic graph admits a $2$--bisection except for the Petersen graph}. In this note, we prove Ban--Linials conjecture for claw--free cubic graphs.

تحميل البحث