Stick-slip Phenomena and Memory Effects in Moving Vortex Matter


الملخص بالإنكليزية

Manipulating vortices in non-conventional superconductors is nowadays a challenging path toward controlling functionalities for superconducting nanodevices. Here, we directly observe and control single vortex core trajectories with unmatched resolution using a new scanning tunneling spectroscopy at very low temperature. Our data show the depinning threshold of a Bragg-glass in a weakly disordered superconductor, a clean 2H-NbSe2 crystal. We first experimentally capture the linear and collective response, the Campbell regime. Upon strong drives, the oscillating trajectories perform a series of stick-slip motions that mimics the lattice periodicity. We then theoretically elucidate this peculiar non-linear regime by solving the Langevin dynamics equations. We additionally explore the impact of initial conditions and reveal an enhancement of the long-range correlations with the cooling procedure. Finally, our work establishes a connection between theory of vortex pinning, memory effects and vortex lineshapes, thus offering a new platform to investigate the relationship between viscous media and individual controllable objects in any many-body systems.

تحميل البحث