A categorical equivalence for Stonean residuated lattices


الملخص بالإنكليزية

Distributive Stonean residuated lattices are closely related to Stone algebras since their bounded lattice reduct is a Stone algebra. In the present work we follow the ideas presented by Chen and Gr{a}tzer and try to apply them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its algebra of dense elements and a connecting map. We define a category whose objects are these triples and suitably defined morphisms, and prove that we have a categorical equivalence between this category and that of Stonean residuated lattices. We compare our results with other works and show some applications of the equivalence.

تحميل البحث