We investigate the emergence of ${cal N}=1$ supersymmetry in the long-range behavior of three-dimensional parity-symmetric Yukawa systems. We discuss a renormalization approach that manifestly preserves supersymmetry whenever such symmetry is realized, and use it to prove that supersymmetry-breaking operators are irrelevant, thus proving that such operators are suppressed in the infrared. All our findings are illustrated with the aid of the $epsilon$-expansion and a functional variant of perturbation theory, but we provide numerical estimates of critical exponents that are based on the non-perturbative functional renormalization group.