Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting


الملخص بالإنكليزية

An important determinant of crop yields is the regulation of photosystem II (PSII) light harvesting by energy-dependent quenching (qE). However, the molecular details of excitation quenching have not been quantitatively connected to the PSII yield, which only emerges on the 100 nm scale of the grana membrane and determines flux to downstream metabolism. Here, we incorporate excitation dissipation by qE into a pigment-scale model of excitation transfer and trapping for a 200 nm x 200 nm patch of the grana membrane. We demonstrate that single molecule measurements of qE are consistent with a weak-quenching regime. Consequently, excitation transport can be rigorously coarse-grained to a 2D random walk with an excitation diffusion length determined by the extent of quenching. A diffusion-corrected lake model substantially improves the PSII yield determined from variable chlorophyll fluorescence measurements and offers an improved model of PSII for photosynthetic metabolism.

تحميل البحث