In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H<1/2. Here the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a local time variational calculus argument.