The Lowest Landau Level (LLL) equation emerges as an accurate approximation for a class of dynamical regimes of Bose-Einstein Condensates (BEC) in two-dimensional isotropic harmonic traps in the limit of weak interactions. Building on recent developments in the field of spatially confined extended Hamiltonian systems, we find a fully nonlinear solution of this equation representing periodically modulated precession of a single vortex. Motions of this type have been previously seen in numerical simulations and experiments at moderately weak coupling. Our work provides the first controlled analytic prediction for trajectories of a single vortex, suggests new targets for experiments, and opens up the prospect of finding analytic multi-vortex solutions.