Low-lying level structure of $^{56}$Cu and its implications on the rp process


الملخص بالإنكليزية

The low-lying energy levels of proton-rich $^{56}$Cu have been extracted using in-beam $gamma$-ray spectroscopy with the state-of-the-art $gamma$-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in $^{56}$Cu serve as resonances in the $^{55}$Ni(p,$gamma$)$^{56}$Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in $Q=639pm82$~keV. We derive the first experimentally-constrained thermonuclear reaction rate for $^{55}$Ni(p,$gamma$)$^{56}$Cu. We find that, with this new rate, the rp-process may bypass the $^{56}$Ni waiting point via the $^{55}$Ni(p,$gamma$) reaction for typical x-ray burst conditions with a branching of up to $sim$40$%$. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the $^{56}$Ni region.

تحميل البحث