$Lambda_{c}$ Production in Au+Au Collisions at $sqrt{s_{NN}}$ = 200 GeV measured by the STAR experiment


الملخص بالإنكليزية

At RHIC, enhancements in the baryon-to-meson ratio for light hadrons and hadrons containing strange quarks have been observed in central heavy-ion collisions compared to those in p+p and peripheral heavy-ion collisions in the intermediate transverse momentum ($p_T$) range (2 $<$ $p_T$ $<$ 6 GeV/$c$). This can be explained by the hadronization mechanism involving multi-parton coalescence. $Lambda_{c}$ is the lightest charmed baryon with mass close to that of $D^0$ meson, and has an extremely short life time (c$tau$$sim$60 $mu$m). Different models predict different magnitudes of enhancement in the $Lambda_{c}$/$D^0$ ratio depending on the degree to which charm quarks are thermalized in the medium and how the coalescence mechanism is implemented. In these proceedings, we report the first measurement of $Lambda_{c}$ production in heavy-ion collisions using the Heavy Flavor Tracker at STAR. The invariant yield of $Lambda_{c}$ for 3 $<$ $p_T$ $<$ 6 GeV/$c$ is measured in 10-60% central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV. The $Lambda_{c}$/$D^0$ ratio is compared to different model calculations, and the physics implications are discussed.

تحميل البحث