Neumann heat flow and gradient flow for the entropy on non-convex domains


الملخص بالإنكليزية

For large classes of non-convex subsets $Y$ in ${mathbb R}^n$ or in Riemannian manifolds $(M,g)$ or in RCD-spaces $(X,d,m)$ we prove that the gradient flow for the Boltzmann entropy on the restricted metric measure space $(Y,d_Y,m_Y)$ exists - despite the fact that the entropy is not semiconvex - and coincides with the heat flow on $Y$ with Neumann boundary conditions.

تحميل البحث