We compute the isospin susceptibility in an effective O($n$) scalar field theory (in $d=4$ dimensions), to third order in chiral perturbation theory ($chi$PT) in the delta--regime using the quantum mechanical rotator picture. This is done in the presence of an additional coupling, involving a parameter $eta$, describing the effect of a small explicit symmetry breaking term (quark mass). For the chiral limit $eta=0$ we demonstrate consistency with our previous $chi$PT computations of the finite-volume mass gap and isospin susceptibility. For the massive case by computing the leading mass effect in the susceptibility using $chi$PT with dimensional regularization, we determine the $chi$PT expansion for $eta$ to third order. The behavior of the shape coefficients for long tube geometry obtained here might be of broader interest. The susceptibility calculated from the rotator approximation differs from the $chi$PT result in terms vanishing like $1/ell$ for $ell=L_t/L_stoinfty$. We show that this deviation can be described by a correction to the rotator spectrum proportional to the square of the quadratic Casimir invariant.